Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38544359

RESUMO

OBJECTIVE: Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS: In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS: Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION: Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.

3.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429495

RESUMO

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética
4.
Cerebellum ; 23(1): 268-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36696030

RESUMO

Autosomal dominant variants in ELOVL4 cause spinocerebellar ataxia type 34 (SCA34; ATX-ELOVL4), classically associated with a skin condition known as erythrokeratoderma. Here, we report a large Italian-Maltese-Australian family with spinocerebellar ataxia. Notably, while there were dermatological manifestations (eczema), erythrokeratoderma was not present. Using a next-generation sequencing panel, we identified a previously reported ELOVL4 variant, NM_022726.4: c.698C > T p.(Thr233Met). The variant was initially classified as a variant of uncertain significance; however, through segregation studies, we reclassified the variant as likely pathogenic. We next identified an individual from another family (Algerian-Maltese-Australian) with the same ELOVL4 variant with spinocerebellar ataxia but without dermatological manifestations. We subsequently performed the first dedicated literature review of ELOVL4-associated ataxia to gain further insights into genotype-phenotype relationships. We identified a total of 60 reported cases of SCA34 to date. The majority had gait ataxia (88.3%), limb ataxia (76.7%), dysarthria (63.3%), and nystagmus (58.3%). Of note, skin lesions related to erythrokeratoderma were seen in a minority of cases (33.3%). Other extracerebellar manifestations included pyramidal tract signs, autonomic disturbances, retinitis pigmentosa, and cognitive impairment. For brain MRI data, cerebellar atrophy was seen in all cases (100%), whereas the hot cross bun sign (typically associated with multiple system atrophy type C) was seen in 32.4% of cases. Our family study and literature review highlight the variable phenotypic spectrum of SCA34. Importantly, it shows that erythrokeratoderma is not found in most cases and that, while a dermatological assessment may be helpful in these patients, SCA34 diagnosis should be considered irrespective of dermatological manifestations.


Assuntos
Ataxia Cerebelar , Dermatopatias Genéticas , Ataxias Espinocerebelares , Humanos , Ataxia/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
5.
Brain Commun ; 5(4): fcad208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621409

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome is a progressive, generally late-onset, neurological disorder associated with biallelic pentanucleotide expansions in Intron 2 of the RFC1 gene. The locus exhibits substantial genetic variability, with multiple pathogenic and benign pentanucleotide repeat alleles previously identified. To determine the contribution of pathogenic RFC1 expansions to neurological disease within an Australasian cohort and further investigate the heterogeneity exhibited at the locus, a combination of flanking and repeat-primed PCR was used to screen a cohort of 242 Australasian patients with neurological disease. Patients whose data indicated large gaps within expanded alleles following repeat-primed PCR, underwent targeted long-read sequencing to identify novel repeat motifs at the locus. To increase diagnostic yield, additional probes at the RFC1 repeat region were incorporated into the PathWest diagnostic laboratory targeted neurological disease gene panel to enable first-pass screening of the locus for all samples tested on the panel. Within the Australasian cohort, we detected known pathogenic biallelic expansions in 15.3% (n = 37) of patients. Thirty indicated biallelic AAGGG expansions, two had biallelic 'Maori alleles' [(AAAGG)exp(AAGGG)exp], two samples were compound heterozygous for the Maori allele and an AAGGG expansion, two samples had biallelic ACAGG expansions and one sample was compound heterozygous for the ACAGG and AAGGG expansions. Forty-five samples tested indicated the presence of biallelic expansions not known to be pathogenic. A large proportion (84%) showed complex interrupted patterns following repeat-primed PCR, suggesting that these expansions are likely to be comprised of more than one repeat motif, including previously unknown repeats. Using targeted long-read sequencing, we identified three novel repeat motifs in expanded alleles. Here, we also show that short-read sequencing can be used to reliably screen for the presence or absence of biallelic RFC1 expansions in all samples tested using the PathWest targeted neurological disease gene panel. Our results show that RFC1 pathogenic expansions make a substantial contribution to neurological disease in the Australasian population and further extend the heterogeneity of the locus. To accommodate the increased complexity, we outline a multi-step workflow utilizing both targeted short- and long-read sequencing to achieve a definitive genotype and provide accurate diagnoses for patients.

6.
Neuromuscul Disord ; 33(2): 161-168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634413

RESUMO

Primary acetylcholine receptor deficiency is the most common subtype of congenital myasthenic syndrome, resulting in reduced amount of acetylcholine receptors expressed at the muscle endplate and impaired neuromuscular transmission. AChR deficiency is caused mainly by pathogenic variants in the ε-subunit of the acetylcholine receptor encoded by CHRNE, although pathogenic variants in other subunits are also seen. We report the clinical and molecular features of 13 patients from nine unrelated kinships with acetylcholine receptor deficiency harbouring the CHRNA1 variant NM_001039523.3:c.257G>A (p.Arg86His) in homozygosity or compound heterozygosity. This variant results in the inclusion of an alternatively-spliced evolutionary exon (P3A) that causes expression of a non-functional acetylcholine receptor α-subunit. We compare the clinical findings of this group to the other cases of acetylcholine receptor deficiency within our cohort. We report differences in phenotype, highlighting a predominant pattern of facial and distal weakness in adulthood, predominantly in the upper limbs, which is unusual for acetylcholine receptor deficiency syndromes, and more in keeping with slow-channel syndrome or distal myopathy. Finally, we stress the importance of including alternative exons in variant analysis to increase the probability of achieving a molecular diagnosis.


Assuntos
Síndromes Miastênicas Congênitas , Receptores Nicotínicos , Humanos , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Éxons/genética , Fenótipo , Mutação , Receptores Nicotínicos/genética
7.
Hum Mol Genet ; 32(7): 1127-1136, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36322148

RESUMO

Nemaline myopathy 8 (NEM8) is typically a severe autosomal recessive disorder associated with variants in the kelch-like family member 40 gene (KLHL40). Common features include fetal akinesia, fractures, contractures, dysphagia, respiratory failure and neonatal death. Here, we describe a 26-year-old man with relatively mild NEM8. He presented with hypotonia and bilateral femur fractures at birth, later developing bilateral Achilles' contractures, scoliosis, and elbow and knee contractures. He had walking difficulties throughout childhood and became wheelchair bound from age 13 after prolonged immobilization. Muscle magnetic resonance imaging at age 13 indicated prominent fat replacement in his pelvic girdle, posterior compartments of thighs and vastus intermedius. Muscle biopsy revealed nemaline bodies and intranuclear rods. RNA sequencing and western blotting of patient skeletal muscle indicated significant reduction in KLHL40 mRNA and protein, respectively. Using gene panel screening, exome sequencing and RNA sequencing, we identified compound heterozygous variants in KLHL40; a truncating 10.9 kb deletion in trans with a likely pathogenic variant (c.*152G > T) in the 3' untranslated region (UTR). Computational tools SpliceAI and Introme predicted the c.*152G > T variant created a cryptic donor splice site. RNA-seq and in vitro analyses indicated that the c.*152G > T variant induces multiple de novo splicing events that likely provoke nonsense mediated decay of KLHL40 mRNA explaining the loss of mRNA expression and protein abundance in the patient. Analysis of 3' UTR variants in ClinVar suggests variants that introduce aberrant 3' UTR splicing may be underrecognized in Mendelian disease. We encourage consideration of this mechanism during variant curation.


Assuntos
Contratura , Miopatias da Nemalina , Masculino , Recém-Nascido , Humanos , Criança , Adolescente , Adulto , Miopatias da Nemalina/genética , Regiões 3' não Traduzidas/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro , Contratura/genética , Mutação
8.
J Pers Med ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36579509

RESUMO

Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie's Mission­the Australian Reproductive Genetic Carrier Screening Project. Mackenzie's Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.

9.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332611

RESUMO

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Assuntos
Bases de Dados Genéticas , Laboratórios , Humanos , Variação Genética , Austrália , Testes Genéticos
10.
Neuropathol Appl Neurobiol ; 48(7): e12846, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962550

RESUMO

AIMS: Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS: Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS: We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.


Assuntos
Disferlina , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Disferlina/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Linhagem , Masculino , Feminino
11.
Sci Adv ; 8(9): eabm5386, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245110

RESUMO

More than 50 neurological and neuromuscular diseases are caused by short tandem repeat (STR) expansions, with 37 different genes implicated to date. We describe the use of programmable targeted long-read sequencing with Oxford Nanopore's ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of STR sites, from a list of predetermined candidates. This correctly diagnoses all individuals in a small cohort (n = 37) including patients with various neurogenetic diseases (n = 25). Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing and identifies noncanonical STR motif conformations and internal sequence interruptions. We observe a diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of repeat disorders. Last, we show how the inclusion of pharmacogenomic genes as secondary ReadUntil targets can further inform patient care.


Assuntos
Sequenciamento por Nanoporos , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições de Microssatélites/genética , Análise de Sequência de DNA
12.
Genet Med ; 24(1): 130-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906502

RESUMO

PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.


Assuntos
Splicing de RNA , RNA , Adolescente , Adulto , Pré-Escolar , Humanos , Mutação , RNA/genética , Splicing de RNA/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
13.
Brain ; 145(11): 3985-3998, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957489

RESUMO

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified 10 bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in sarcoplasmic reticulum function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in sarcoplasmic reticulum Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the sarcoplasmic reticulum and/or a decrease in Ca2+ sarcoplasmic reticulum storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.


Assuntos
Cálcio , Rabdomiólise , Adolescente , Humanos , Rabdomiólise/genética , Rabdomiólise/diagnóstico , Rabdomiólise/patologia , Mialgia/genética , Retículo Sarcoplasmático/metabolismo , Perda de Heterozigosidade , Proteínas Serina-Treonina Quinases , Fatores de Troca de Nucleotídeo Guanina Rho/genética
14.
J Oncol Pharm Pract ; 28(5): 1077-1084, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33990165

RESUMO

PURPOSE: To retrospectively determine the rate of death occurring within 14 and 30 days of systemic anticancer therapy (SACT), compare this against a previous audit and benchmark results against other cancer centres. Secondly, to determine if the introduction of immune checkpoint inhibitors (ICI), not available at the time of the initial audit, impacted mortality rates. METHOD: All adult solid tumour and haematology patients receiving SACT at an Australian Regional Cancer Centre (RCC) between January 2016 and July 2020 were included. RESULTS: Over a 55-month period, 1709 patients received SACT. Patients dying within 14 and 30 days of SACT were 3.3% and 7.0% respectively and is slightly higher than our previous study which was 1.89% and 5.6%. Mean time to death was 15.5 days. Males accounted for 63.9% of patients and the mean age was 66.8 years. 46.2% of the 119 patients dying in the 30 days post SACT started a new line of treatment during that time. Of 98 patients receiving ICI, 22.5% died within 30 days of commencement. Disease progression was the most common cause of death (79%). The most common place of death was the RCC (38.7%). CONCLUSION: The rate of death observed in our re-audit compares favourably with our previous audit and is still at the lower end of that seen in published studies in Australia and internationally. Cases of patients dying within 30 days of SACT should be regularly reviewed to maintain awareness of this benchmark of quality assurance and provide a feedback process for clinicians.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Masculino , Humanos , Idoso , Estudos Retrospectivos , Austrália/epidemiologia , Progressão da Doença
15.
Neuropathol Appl Neurobiol ; 48(1): e12743, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34164833

RESUMO

Rare pathogenic variants in TOR1AIP1 (OMIM 614512), coding the inner nuclear membrane protein lamin-associated protein 1 (LAP1), have been associated with a spectrum of disorders including limb girdle muscular dystrophy with cardiac involvement and a severe multisystem phenotype. Recently, Cossins et al reported two siblings with limb girdle muscular dystrophy and impaired transmission of the neuromuscular synapse, demonstrating that defective LAP1 may lead to a congenital myasthenic syndrome. Herein, we describe the association of TOR1AIP1 deficiency with congenital myasthenic syndrome in three siblings.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Síndromes Miastênicas Congênitas , Proteínas do Citoesqueleto/genética , Humanos , Laminas/genética , Proteínas de Membrana/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Síndromes Miastênicas Congênitas/genética , Fenótipo
16.
Nat Commun ; 12(1): 4680, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344887

RESUMO

Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10-10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.


Assuntos
Síndrome de Goldenhar/genética , Haploinsuficiência , Fatores de Processamento de RNA/genética , Adolescente , Adulto , Animais , Criança , Exoma/genética , Feminino , Estudos de Associação Genética , Síndrome de Goldenhar/patologia , Humanos , Lactente , Masculino , Mutação , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Linhagem , Spliceossomos/genética , Xenopus laevis
17.
Neurol Genet ; 7(1): e554, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33977140

RESUMO

OBJECTIVE: To describe the diagnostic utility of whole-genome sequencing and RNA studies in boys with suspected dystrophinopathy, for whom multiplex ligation-dependent probe amplification and exomic parallel sequencing failed to yield a genetic diagnosis, and to use remnant normal DMD splicing in 3 families to define critical levels of wild-type dystrophin bridging clinical spectrums of Duchenne to myalgia. METHODS: Exome, genome, and/or muscle RNA sequencing was performed for 7 males with elevated creatine kinase. PCR of muscle-derived complementary DNA (cDNA) studied consequences for DMD premessenger RNA (pre-mRNA) splicing. Quantitative Western blot was used to determine levels of dystrophin, relative to control muscle. RESULTS: Splice-altering intronic single nucleotide variants or structural rearrangements in DMD were identified in all 7 families. Four individuals, with abnormal splicing causing a premature stop codon and nonsense-mediated decay, expressed remnant levels of normally spliced DMD mRNA. Quantitative Western blot enabled correlation of wild-type dystrophin and clinical severity, with 0%-5% dystrophin conferring a Duchenne phenotype, 10% ± 2% a Becker phenotype, and 15% ± 2% dystrophin associated with myalgia without manifesting weakness. CONCLUSIONS: Whole-genome sequencing relied heavily on RNA studies to identify DMD splice-altering variants. Short-read RNA sequencing was regularly confounded by the effectiveness of nonsense-mediated mRNA decay and low read depth of the giant DMD mRNA. PCR of muscle cDNA provided a simple, yet informative approach. Highly relevant to genetic therapies for dystrophinopathies, our data align strongly with previous studies of mutant dystrophin in Becker muscular dystrophy, with the collective conclusion that a fractional increase in levels of normal dystrophin between 5% and 20% is clinically significant.

18.
J Med Genet ; 58(9): 609-618, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33060286

RESUMO

BACKGROUND: Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS: We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS: Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS: Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Fenótipo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Mapeamento Cromossômico , Feminino , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Sequenciamento do Exoma
20.
Brain ; 143(10): 2904-2910, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103729

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is a progressive late-onset, neurological disease. Recently, a pentanucleotide expansion in intron 2 of RFC1 was identified as the genetic cause of CANVAS. We screened an Asian-Pacific cohort for CANVAS and identified a novel RFC1 repeat expansion motif, (ACAGG)exp, in three affected individuals. This motif was associated with additional clinical features including fasciculations and elevated serum creatine kinase. These features have not previously been described in individuals with genetically-confirmed CANVAS. Haplotype analysis showed our patients shared the same core haplotype as previously published, supporting the possibility of a single origin of the RFC1 disease allele. We analysed data from >26 000 genetically diverse individuals in gnomAD to show enrichment of (ACAGG) in non-European populations.


Assuntos
Povo Asiático/genética , Vestibulopatia Bilateral/genética , Ataxia Cerebelar/genética , Expansão das Repetições de DNA/genética , Proteína de Replicação C/genética , Idoso , Vestibulopatia Bilateral/complicações , Vestibulopatia Bilateral/diagnóstico , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico , Estudos de Coortes , Feminino , Humanos , Indonésia , Masculino , Pessoa de Meia-Idade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...